
The Data Engineering Cookbook

Mastering The Plumbing Of Data Science

Andreas Kretz

May 18, 2019

v1.1

Contents

I Introduction 9

1 How To Use This Cookbook 10

2 Data Engineer vs Data Scientists 11

2.1 Data Scientist . 11

2.2 Data Engineer . 12

2.3 Who Companies Need . 13

II Basic Data Engineering Skills 14

3 Learn To Code 15

4 Get Familiar With Github 16

5 Agile Development – available 17

5.1 Why is agile so important? . 17

5.2 Agile rules I learned over the years – available 18

5.2.1 Is the method making a difference? 18

5.2.2 The problem with outsourcing . 18

5.2.3 Knowledge is king: A lesson from Elon Musk 19

5.2.4 How you really can be agile . 19

5.3 Agile Techniques . 20

5.3.1 Scrum . 20

5.3.2 OKR . 20

6 Learn how a Computer Works 21

6.1 CPU,RAM,GPU,HDD . 21

6.2 Differences between PCs and Servers . 21

7 Computer Networking - Data Transmission 22

7.1 ISO/OSI Model . 22

2

7.2 IP Subnetting . 22

7.3 Switch, Level 3 Switch . 22

7.4 Router . 22

7.5 Firewalls . 22

8 Security and Privacy 23

8.1 SSL Public & Private Key Certificates 23

8.2 What is a certificate authority . 23

8.3 JAva Web Tokens . 23

8.4 GDPR regulations . 23

8.5 Privacy by design . 23

9 Linux 24

9.1 OS Basics . 24

9.2 Shell scripting . 24

9.3 Cron jobs . 24

9.4 Packet management . 24

10 The Cloud 25

10.1 AWS,Azure, IBM, Google Cloud basics 25

10.2 cloud vs on premise . 25

10.3 up & downsides . 25

10.4 Security . 25

11 Security Zone Design 26

11.1 How to secure a multi layered application 26

11.2 Cluster security with Kerberos . 26

11.3 Kerberos Tickets . 26

12 Stream Processing 27

12.1 Three methods of streaming — available 27

12.2 At Least Once . 27

12.3 At Most Once . 28

12.4 Exactly Once . 28

12.5 Check The Tools! . 28

13 Big Data 29

13.1 What is big data and where is the difference to data science and data

analytics? . 29

13.2 The 4Vs of Big Data — available . 29

3

13.3 Why Big Data? — available . 30

13.3.1 Planning is Everything . 31

13.3.2 The Problem With ETL . 31

13.3.3 Scaling Up . 32

13.3.4 Scaling Out . 33

13.3.5 Please Don’t go Big Data . 34

14 Data Warehouse vs Data Lake 35

15 Hadoop Platforms — available 36

15.1 What is Hadoop . 36

15.2 What makes Hadoop so popular? — available 36

15.3 Hadoop Ecosystem Components . 37

15.4 Hadoop Is Everywhere? . 39

15.5 SHOULD YOU LEARN HADOOP? . 40

How does a Hadoop System architecture look like 40

What tools are usually in a with Hadoop Cluster 40

15.6 How to select Hadoop Cluster Hardware 40

16 Is ETL still relevant for Analytics? 41

17 Docker 42

17.1 What is docker and what do you use it for — available 42

17.1.1 Don’t Mess Up Your System . 42

17.1.2 Preconfigured Images . 42

17.1.3 Take It With You . 43

17.2 Kubernetes Container Deployment . 43

17.3 How to create, start,stop a Container . 44

17.4 Docker micro services? . 44

17.5 Kubernetes . 44

17.6 Why and how to do Docker container orchestration 44

18 REST APIs 45

18.1 HTTP Post/Get . 45

18.2 API Design . 45

18.3 Implementation . 45

18.4 OAuth security . 45

19 Databases 46

19.1 SQL Databases . 46

19.1.1 Database Design . 46

4

19.1.2 SQL Queries . 46

19.1.3 Stored Procedures . 46

19.1.4 ODBC/JDBC Server Connections 46

19.2 NoSQL Stores . 46

19.2.1 KeyValue Stores (HBase) . 46

19.2.2 Document Store HDFS — available 46

19.2.3 Document Store MongoDB . 48

19.2.4 Hive Warehouse . 48

19.2.5 Impala . 48

19.2.6 Kudu . 48

19.2.7 Time Series Databases . 48

19.2.8 MPP Databases (Greenplum) . 48

20 Data Processing / Analytics - Frameworks 49

20.1 MapReduce . 49

20.1.1 How does MapReduce work – available 51

20.1.2 Example . 51

20.1.3 What is the limitation of MapReduce? – available 53

20.2 Apache Spark . 53

20.2.1 What is the difference to MapReduce? – available 54

20.2.2 How does Spark fit to Hadoop? – available 54

20.2.3 Where’s the difference? . 54

20.2.4 Spark and Hadoop is a perfect fit 55

20.2.5 Spark on YARN: . 55

20.2.6 My simple rule of thumb: . 56

20.2.7 Available Languages – available 56

20.2.8 How to do stream processing . 56

20.2.9 How to do batch processing . 56

20.2.10 How does Spark use data from Hadoop – available 56

20.3 What is a RDD and what is a DataFrame? 58

20.4 Spark coding with Scala . 58

20.5 Spark coding with Python . 58

20.6 How and why to use SparkSQL? . 58

20.7 Machine Learning on Spark? (Tensor Flow) 58

20.8 MLlib: . 58

20.9 Spark Setup – available . 58

20.10Spark Resource Management – available 59

5

21 Apache Kafka 60

21.1 Why a message queue tool? . 60

21.2 Kakfa architecture . 60

21.3 What are topics . 60

21.4 What does Zookeeper have to do with Kafka 60

21.5 How to produce and consume messages 60

22 Machine Learning 61

22.1 Training and Applying models . 61

22.2 What is deep learning . 61

22.3 How to do Machine Learning in production — available 61

22.4 Why machine learning in production is harder then you think – available 62

22.5 Models Do Not Work Forever . 62

22.6 Where The Platforms That Support This? 62

22.7 Training Parameter Management . 63

22.8 What’s Your Solution? . 63

22.9 How to convince people machine learning works — available 63

22.10No Rules, No Physical Models . 64

22.11You Have The Data. USE IT! . 64

22.12Data is Stronger Than Opinions . 65

23 Data Visualization 66

23.1 Android & IOS . 66

23.2 How to design APIs for mobile apps . 66

23.3 How to use Webservers to display content 66

23.3.1 Tomcat . 67

23.3.2 Jetty . 67

23.3.3 NodeRED . 67

23.3.4 React . 67

23.4 Business Intelligence Tools . 67

23.4.1 Tableau . 67

23.4.2 PowerBI . 67

23.4.3 Quliksense . 67

23.5 Identity & Device Management . 67

23.5.1 What is a digital twin? . 67

23.5.2 Active Directory . 67

6

III Building A Data Platform Example 68

24 My Big Data Platform Blueprint 69

24.1 Ingest . 70

24.2 Analyse / Process . 70

24.3 Store . 71

24.4 Display . 72

25 Lambda Architecture 73

25.1 Batch Processing . 73

25.2 Stream Processing . 74

25.3 Should you do stream or batch processing? 74

25.4 Lambda Architecture Alternative . 75

25.4.1 Kappa Architecture . 75

25.4.2 Kappa Architecture with Kudu 75

26 Thoughts On Choosing The Target Environment 76

26.1 Cloud vs On-Premise . 76

26.2 Cloud Native or Independent Vendors . 76

27 Thoughts On Choosing A Development Environment 77

27.1 Cloud As Dev Environment . 77

27.2 Local Dev Environment . 77

27.3 Data Architecture . 77

27.3.1 Source Data . 77

27.3.2 Analytics Requirements For Streaming 77

27.3.3 Analytics Requirements For Batch Processing 77

27.3.4 Data Visualization . 77

27.4 Milestone 1 — Tool Decisions . 77

IV Case Studies 78

28 How I do Case Studies 79

28.1 Data Science @Airbnb . 79

28.2 Data Sciecne @Baidu . 79

28.3 Data Sciecne @Blackrock . 79

28.4 Data Sciecne @BMW . 79

28.5 Data Sciecne @Booking.com . 80

28.6 Data Sciecne @CERN . 80

28.7 Data Sciecne @Disney . 80

7

28.8 Data Sciecne @Drivetribe . 81

28.9 Data Sciecne @Dropbox . 81

28.10Data Sciecne @Ebay . 81

28.11Data Sciecne @Expedia . 81

28.12Data Sciecne @Facebook . 81

28.13Data Sciecne @@Grammarly . 81

28.14Data Sciecne @ING Fraud . 81

28.15Data Sciecne @Instagram . 82

28.16Data Sciecne @LinkedIn . 82

28.17Data Sciecne @Lyft . 82

28.18Data Sciecne @NASA . 82

28.19Data Science @Netflix – available . 82

28.20Data Sciecne @OTTO . 86

28.21Data Sciecne @Paypal . 86

28.22Data Sciecne @Pinterest . 86

28.23Data Sciecne @Salesforce . 87

28.24Data Sciecne @Slack . 87

28.25Data Sciecne @Spotify . 87

28.26Data Sciecne @Symantec . 87

28.27Data Science @Tinder . 87

28.28Data Science @Twitter . 88

28.29Data Science @Uber . 88

28.30Data Science @Upwork . 88

28.31Data Sciecne @Woot . 88

28.32Data Sciecne @Zalando . 88

8

Part I

Introduction

9

1 How To Use This Cookbook

What do you actually need to learn to become an awesome data engineer? Look no

further, you find it here.

How to use this document: This is not a training! It’s a collection of skills, that I value

highly in my daily work as a data engineer. It’s intended to be a starting point for you

to find the topics to look into.

This project is a work in progress! Over the next weeks I am going to share with you my

thoughts on why each topic is important. I also try to include links to useful resources.

How to find out what is new? You will always find the newest version on my Patreon

https://www.patreon.com/plumbersofds

Help make this collection awesome! Join the discussion on Patreon or write me an email

to andreaskayy@gmail.com. Tell me your thoughts, what you value, you think should be

included, or where I am wrong.

• Twitter data to predict best time to post using the hashtag datascience or ai

• Find top tweets for the day

• Top users

• Analyze sentiment and keywords

10

2 Data Engineer vs Data Scientists

2.1 Data Scientist

Data scientists aren’t like every other scientist.

Data scientists do not wear white coats or work in high tech labs full of science fiction

movie equipment. They work in offices just like you and me.

What differs them from most of us is that they are the math experts. They use linear

algebra and multivariable calculus to create new insight from existing data.

How exactly does this insight look?

Here’s an example:

An industrial company produces a lot of products that need to be tested before shipping.

Usually such tests take a lot of time because there are hundreds of things to be tested.

All to make sure that your product is not broken.

Wouldn’t it be great to know early if a test fails ten steps down the line? If you knew

that you could skip the other tests and just trash the product or repair it.

That’s exactly where a data scientist can help you, big-time. This field is called predictive

analytics and the technique of choice is machine learning.

Machine what? Learning?

Yes, machine learning, it works like this:

You feed an algorithm with measurement data. It generates a model and optimises it

based on the data you fed it with. That model basically represents a pattern of how your

data is looking You show that model new data and the model will tell you if the data

still represents the data you have trained it with. This technique can also be used for

predicting machine failure in advance with machine learning. Of course the whole process

is not that simple.

11

The actual process of training and applying a model is not that hard. A lot of work

for the data scientist is to figure out how to pre-process the data that gets fed to the

algorithms.

Because to train a algorithm you need useful data. If you use any data for the training

the produced model will be very unreliable.

A unreliable model for predicting machine failure would tell you that your machine is

damaged even if it is not. Or even worse: It would tell you the machine is ok even when

there is an malfunction.

Model outputs are very abstract. You also need to post-process the model outputs to

receive health values from 0 to 100.

Figure 2.1: The Machine Learning Pipeline

2.2 Data Engineer

Data Engineers are the link between the management’s big data strategy and the data

scientists that need to work with data.

What they do is building the platforms that enable data scientists to do their magic.

These platforms are usually used in four different ways:

• Data ingestion and storage of large amounts of data

• Algorithm creation by data scientists

• Automation of the data scientist’s machine learning models and algorithms for

production use

• Data visualisation for employees and customers

• Most of the time these guys start as traditional solution architects for systems

that involve SQL databases, web servers, SAP installations and other “standard”

12

systems.

But to create big data platforms the engineer needs to be an expert in specifying, set-

ting up and maintaining big data technologies like: Hadoop, Spark, HBase, Cassandra,

MongoDB, Kafka, Redis and more.

What they also need is experience on how to deploy systems on cloud infrastructure like

at Amazon or Google or on premise hardware.

2.3 Who Companies Need

For a good company it is absolutely important to get well trained data engineers and

data scientists.

Think of the data scientist as the professional race car driver. A fit athlete with talent

and driving skills like you have never seen.

What he needs to win races is someone who will provide him the perfect race car to drive.

That’s what the solution architect is for.

Like the driver and his team the data scientist and the data engineer need to work closely

together. They need to know the different big data tools Inside and out.

Thats why companies are looking for people with Spark experience. It is a common

ground between both that drives innovation.

Spark gives data scientists the tools to do analytics and helps engineers to bring the data

scientist’s algorithms into production.

After all, those two decide how good the data platform is, how good the analytics insight

is and how fast the whole system gets into a production ready state.

13

Part II

Basic Data Engineering Skills

14

3 Learn To Code

Why this is important: Without coding you cannot do much in data engineering. I cannot

count the number of times I needed a quick Java hack.

The possibilities are endless:

• Writing or quickly getting some data out of a SQL DB

• Testing to produce messages to a Kafka topic

• Understanding Source code of a Java Webservice

• Reading counter statistics out of a HBase key value store

So, which language do I recommend then?

I highly recommend Java. It’s everywhere!

When you are getting into data processing with Spark you should use Scala. But, after

learning Java this is easy to do.

Also Python is a great choice. It is super versatile.

Personally however, I am not that big into Python. But I am going to look into it

Where to Learn? There’s a Java Course on Udemy you could look at: https://www.udemy.com/java-

programming-tutorial-for-beginners

• OOP Object oriented programming

• What are Unit tests to make sure what you code is working

• Functional Programming

• How to use build managment tools like Maven

• Resilliant testing (?)

I talked about the importance of learning by doing in this podcast:

15

4 Get Familiar With Github

Why this is important: One of the major problems with coding is to keep track of changes.

It is also almost impossible to maintain a program you have multiple versions of.

Another is the topic of collaboration and documentation. Which is super Important.

Let’s say you work on a Spark application and your colleges need to make changes while

you are on holiday. Without some code management they are in huge trouble:

Where is the code? What have you changed last? Where is the documentation? How do

we mark what we have changed?

But if you put your code on GitHub your colleges can find your code. They can understand

it through your documentation (please also have in-line comments)

Developers can pull your code, make a new branch and do the changes. After your holiday

you can inspect what they have done and merge it with your original code. and you end

up having only one application

Where to learn: Check out the GitHub Guides page where you can learn all the basics:

https://guides.github.com/introduction/flow/

This great GitHub commands cheat sheet saved my butt multiple times: https://www.atlassian.com/git/tutorials/atlassian-

git-cheatsheet

Pull, Push, Branching, Forking

Also talked about it in this podcast:

16

5 Agile Development – available

Agility, the ability to adapt quickly to changing circumstances.

These days everyone wants to be agile. Big or small company people are looking for the

“startup mentality”.

Many think it’s the corporate culture. Others think it’s the process how we create things

that matters.

In this article I am going to talk about agility and self-reliance. About how you can

incorporate agility in your professional career.

5.1 Why is agile so important?

Historically development is practiced as a hard defined process. You think of something,

specify it, have it developed and then built in mass production.

It’s a bit of an arrogant process. You assume that you already know exactly what a

customer wants. Or how a product has to look and how everything works out.

The problem is that the world does not work this way!

Often times the circumstances change because of internal factors.

Sometimes things just do not work out as planned or stuff is harder than you think.

You need to adapt.

Other times you find out that you build something customers do not like and need to be

changed.

You need to adapt.

That’s why people jump on the Scrum train. Because Scrum is the definition of agile

development, right?

17

5.2 Agile rules I learned over the years – available

5.2.1 Is the method making a difference?

Yes, Scrum or Google’s OKR can help to be more agile. The secret to being agile however,

is not only how you create.

What makes me cringe is people try to tell you that being agile starts in your head. So,

the problem is you?

No!

The biggest lesson I have learned over the past years is this: Agility goes down the drain

when you outsource work.

5.2.2 The problem with outsourcing

I know on paper outsourcing seems like a no brainer: Development costs against the fixed

costs.

It is expensive to bind existing resources on a task. It is even more expensive if you need

to hire new employees.

The problem with outsourcing is that you pay someone to build stuff for you.

It does not matter who you pay to do something for you. He needs to make money.

His agenda will be to spend as less time as possible on your work. That is why outsourcing

requires contracts, detailed specifications, timetables and delivery dates.

He doesn’t want to spend additional time on a project, only because you want changes

in the middle. Every unplanned change costs him time and therefore money.

If so, you need to make another detailed specification and a contract change.

He is not going to put his mind into improving the product while developing. Firstly

because he does not have the big picture. Secondly because he does not want to.

He is doing as he is told.

Who can blame him? If I was the subcontractor I would do exactly the same!

Does this sound agile to you?

18

5.2.3 Knowledge is king: A lesson from Elon Musk

Doing everything in house, that’s why startups are so productive. No time is wasted on

waiting for someone else.

If something does not work, or needs to be changed, there is someone in the team who

can do it right away. .

One very prominent example who follows this strategy is Elon Musk.

Tesla’s Gigafactories are designed to get raw materials in on one side and spit out cars

on the other. Why do you think Tesla is building Gigafactories who cost a lot of money?

Why is SpaceX building its one space engines? Clearly there are other, older, companies

who could do that for them.

Why is Elon building tunnel boring machines at his new boring company?

At first glance this makes no sense!

5.2.4 How you really can be agile

If you look closer it all comes down to control and knowledge. You, your team, your

company, needs to as much as possible on your own. Self-reliance is king.

Build up your knowledge and therefore the teams knowledge. When you have the ability

to do everything yourself, you are in full control.

You can build electric cars, rocket engines or bore tunnels.

Don’t largely rely on others and be confident to just do stuff on your own.

Dream big and JUST DO IT!

PS. Don’t get me wrong. You can still outsource work. Just do it in a smart way by

outsourcing small independent parts.

19

5.3 Agile Techniques

5.3.1 Scrum

5.3.2 OKR

I talked about this in this Podcast: https://anchor.fm/andreaskayy/embed/episodes/Agile-

Development-Is-Important-But-Please-Dont-Do-Scrum–PoDS-041-e2e2j4

20

6 Learn how a Computer Works

6.1 CPU,RAM,GPU,HDD

6.2 Differences between PCs and Servers

I talked about computer hardware and GPU processing in this podcast: https://anchor.fm/andreaskayy/embed/episodes/Why-

the-hardware-and-the-GPU-is-super-important–PoDS-030-e23rig

21

7 Computer Networking - Data

Transmission

7.1 ISO/OSI Model

7.2 IP Subnetting

7.3 Switch, Level 3 Switch

7.4 Router

7.5 Firewalls

I talked about Network Infrastructure and Techniques in this podcast: https://anchor.fm/andreaskayy/embed/episodes/IT-

Networking-Infrastructure-and-Linux-031-PoDS-e242bh

22

8 Security and Privacy

8.1 SSL Public & Private Key Certificates

8.2 What is a certificate authority

8.3 JAva Web Tokens

8.4 GDPR regulations

8.5 Privacy by design

23

9 Linux

9.1 OS Basics

9.2 Shell scripting

9.3 Cron jobs

9.4 Packet management

Linux Tips are the second part of this podcast: https://anchor.fm/andreaskayy/embed/episodes/IT-

Networking-Infrastructure-and-Linux-031-PoDS-e242bh

24

10 The Cloud

10.1 AWS,Azure, IBM, Google Cloud basics

10.2 cloud vs on premise

10.3 up & downsides

10.4 Security

Listen to a few thoughts about the cloud in this podcast: https://anchor.fm/andreaskayy/embed/episodes/Dont-

Be-Arrogant-The-Cloud-is-Safer-Then-Your-On-Premise-e16k9s

25

11 Security Zone Design

11.1 How to secure a multi layered application

(UI in different zone then SQL DB)

11.2 Cluster security with Kerberos

I talked about security zone design and lambda architecture in this podcast: https://anchor.fm/andreaskayy/embed/episodes/How-

to-Design-Security-Zones-and-Lambda-Architecture–PoDS-032-e248q2

11.3 Kerberos Tickets

26

12 Stream Processing

12.1 Three methods of streaming — available

In stream processing sometimes it is ok to drop messages, other times it is not. Sometimes

it is fine to process a message multiple times, other times that needs to be avoided like

hell.

Today’s topic are the different methods of streaming: At most once, at least once and

exactly once.

What this means and why it is so important to keep them in mind when creating a

solution. That is what you will find out in this article.

12.2 At Least Once

At least once, means a message gets processed in the system once or multiple times. So

with at least once it’s not possible that a message gets into the system and is not getting

processed.

It’s not getting dropped or lost somewhere in the system.

One example where at least once processing can be used is when you think about a fleet

management of cars. You get GPS data from cars and that GPS data is transmitted with

a timestamp and the GPS coordinates.

It’s important that you get the GPS data at least once, so you know where the car is. If

you’re processing this data multiple times, it always has the the timestamp with it.

Because of that it does not matter that it gets processed multiple times, because of the

timestamp. Or that it would be stored multiple times, because it would just override the

existing one.

27

12.3 At Most Once

The second streaming method is at most once. At most once means that it’s okay to

drop some information, to drop some messages.

But it’s important that a message is only only processed once as a maximum.

A example for this is event processing. Some event is happening and that event is not

important enough, so it can be dropped. It doesn’t have any consequences when it gets

dropped.

But when that event happens it’s important that it does not get processed multiple times.

Then it would look as if the event happend five or six times instead of only one.

Think about engine misfires. If it happens once, no big deal. But if the system tells you

it happens a lot you will think you have a problem with your engine.

12.4 Exactly Once

Another thing is exactly once, this means it’s not okay to drop data, it’s not okay to lose

data and it’s also not okay to process one message what data said multiple times

A example for this is for instance banking. When you think about credit card transactions

it’s not okay to drop a transaction.

When dropped your payment is not going through. It’s also not okay to have a transaction

processed multiple times, because then you are paying multiple times.

12.5 Check The Tools!

All of this sounds very simple and logical. What kind of processing is done has to be a

requirement for your use case.

It needs to be thought about in the design process, because not every tool is supporting

all three methods. Very often you need to code your application very differently based

on the streaming method.

Especially exactly once is very hard to do.

So, the tool of data processing needs to be chosen based on if you need exactly once, at

least once or if you need at most once.

28

13 Big Data

13.1 What is big data and where is the difference to

data science and data analytics?

I talked about the difference in this podcast: https://anchor.fm/andreaskayy/embed/episodes/BI-

vs-Data-Science-vs-Big-Data-e199hq

13.2 The 4Vs of Big Data — available

It is a complete misconception. Volume is only one part of the often called four V’s of

big data: Volume, velocity, variety and veracity.

Volume is about the size. How much data you have.

Velocity is about the speed of how fast the data is getting to you.

How much data is in a specific time needs to get processed or is coming into the system.

This is where the whole concept of streaming data and real-time processing comes in to

play.

Variety is the third one. It means, that the data is very different. That you have very

different types of data structures.

Like CSV files, PDFs that you have stuff in XML. That you have JSON logfiles, or that

you have data in some kind of a key value store.

It’s about the variety of data types from different sources that you basically want to join

together. All to make an analysis based on that data.

Veracity is fourth and this is a very very difficult one. The issue with big data is, that

it is very unreliable.

You cannot really trust the data. Especially when you’re coming from the IoT, the

29

Internet of Things side. Devices use sensors for measurement of temperature, pressure,

acceleration and so on.

You cannot always be hundred percent sure that the actual measurement is right.

When you have data that is from for instance SAP and it contains data that is created

by hand you also have problems. As you know we humans are bad at inputting stuff.

Everybody articulates different. We make mistakes, down to the spelling and that can

be a very difficult issue for analytics.

I talked about the 4Vs in this podcast: https://anchor.fm/andreaskayy/embed/episodes/4-

Vs-Of-Big-Data-Are-Enough-e1h2ra

13.3 Why Big Data? — available

What I always emphasize is the four V’s are quite nice. They give you a general direction.

There is a much more important issue: Catastrophic Success.

What I mean by catastrophic success is, that your project, your startup or your platform

has more growth that you anticipated. Exponential growth is what everybody is looking

for.

Because with exponential growth there is the money. It starts small and gets very big

very fast. The classic hockey stick curve:

1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384. . . .BOOM!

Think about it. It starts small and quite slow, but gets very big very fast.

You get a lot of users or customers who are paying money to use your service, the platform

or whatever. If you have a system that is not equipped to scale and process the data the

whole system breaks down.

That’s catastrophic success. You are so successfull and grow so fast that you cannot fulfill

the demand anymore. And so you fail and it’s all over.

It’s now like you just can make that up while you go. That you can foresee in a few

months or weeks the current system doesn’t work anymore.

30

13.3.1 Planning is Everything

It’s all happens very very fast and you cannot react anymore. There’s a necessary type

of planning and analyzing the potential of your business case necessary.

Then you need to decide if you actually have big data or not.

You need to decide if you use big data tools. This means when you conceptualize the

whole infrastructure it might look ridiculous to actually focus on big data tools.

But in the long run it will help you a lot. Good planning will get a lot of problems out

of the way, especially if you think about streaming data and real-time analytics.

13.3.2 The Problem With ETL

A typical old-school platform deployment would look like the picture below. Devices use

a data API to upload data that gets stored in a SQL database. An external analytics

tool is querying data and uploading the results back to the SQL db. Users then use the

user interface to display data stored in the database.

Figure 13.1: Common SQL Platform Architecture

Now, when the front end queries data from the SQL database the following three steps

happen:

31

The database extracts all the needed rows from the storage. Extracted data gets trans-

formed, for instance sorted by timestamp or something a lot more complex.

The extracted and transformed data gets loaded to the destination (the user interface)

for chart creation With exploding amounts of stored data the ETL process starts being

a real problem.

Analytics is working with large data sets, for instance whole days, weeks, months or more.

Data sets are very big like 100GB or Terabytes. That means Billions or Trillions of rows.

This has the result that the ETL process for large data sets takes longer and longer. Very

quickly the ETL performance gets so bad it won’t deliver results to analytics anymore.

A traditional solution to overcome these performance issues is trying to increase the

performance of the database server. That’s what’s called scaling up.

13.3.3 Scaling Up

To scale up the system and therefore increase ETL speeds administrators resort to more

powerful hardware by:

Speeding up the extract performance by adding faster disks to physically read the data

faster. Increasing RAM for row caching. What is already in memory does not have to be

read by slow disk drives. Using more powerful CPU’s for better transform performance

(more RAM helps here as well) Increasing or optimising networking performance for faster

data delivery to the front end and analytics Scaling up the system is fairly easy.

Figure 13.2: Scaling up a SQL Database

But with exponential growth it is obvious that sooner or later (more sooner than later)

you will run into the same problems again. At some point you simply cannot scale up

anymore because you already have a monster system, or you cannot afford to buy more

expensive hardware.

The next step you could take would be scaling out.

32

13.3.4 Scaling Out

Scaling out is the opposite of scaling up. Instead of building bigger systems the goal is

to distribute the load between many smaller systems.

The simplest way of scaling out an SQL database is using a storage area network (SAN)

to store the data. You can then use up to eight SQL servers, attach them to the SAN

and let them handle queries. This way load gets distributed between those eight servers.

Figure 13.3: Scaling out a SQL Database

One major downside of this setup is that, because the storage is shared between the

sql servers, it can only be used as an read only database. Updates have to be done

periodically, for instance once a day. To do updates all SQL servers have to detach from

the database. Then, one is attaching the db in read-write mode and refreshing the data.

This procedure can take a while if a lot of data needs to be uploaded.

This Link to a Microsoft MSDN page has more options of scaling out an SQL database

for you.

I deliberately don’t want to get into details about possible scaling out solutions. The

point I am trying to make is that while it is possible to scale out SQL databases it is very

complicated.

There is no perfect solution. Every option has its up- and downsides. One common

major issue is the administrative effort that you need to take to implement and maintain

33

a scaled out solution.

13.3.5 Please Don’t go Big Data

If you don’t run into scaling issues please, do not use big data tools!

Big data is a expensive thing. A Hadoop cluster for instance needs at least five servers

to work properly. More is better.

Believe me this stuff costs a lot of money.

Especially when you are talking the maintenance and development on top big daat tools

into account.

If you don’t need it it’s making absolutely no sense at all!

On the other side: If you really need big data tools they will save your ass :)

34

14 Data Warehouse vs Data Lake

35

15 Hadoop Platforms — available

When people talk about big data, one of the first things come to mind is Hadoop. Google’s

search for Hadoop returns about 28 million results.

It seems like you need Hadoop to do big data. Today I am going to shed light onto why

Hadoop is so trendy.

You will see that Hadoop has evolved from a platform into an ecosystem. It’s design

allows a lot of Apache projects and 3rd party tools to benefit from Hadoop.

I will conclude with my opinion on, if you need to learn Hadoop and if Hadoop is the

right technology for everybody.

15.1 What is Hadoop

Hadoop is a platform for distributed storing and analyzing of very large data sets.

Hadoop has four main modules: Hadoop common, HDFS, MapReduce and YARN. The

way these modules are woven together is what makes Hadoop so successful.

The Hadoop common libraries and functions are working in the background. That’s why

I will not go further into them. They are mainly there to support Hadoop’s modules.

15.2 What makes Hadoop so popular? — available

Storing and analyzing data as large as you want is nice. But what makes Hadoop so

popular?

Hadoop’s core functionality is the driver of Hadoop’s adoption. Many Apache side

projects use it’s core functions.

Because of all those side projects Hadoop has turned more into an ecosystem. An ecosys-

tem for storing and processing big data.

36

To better visualize this eco system I have drawn you the following graphic. It shows some

projects of the Hadoop ecosystem who are closely connected with the Hadoop.

It is not a complete list. There are many more tools that even I don’t know. Maybe I

am drawing a complete map in the future.

Figure 15.1: Hadoop Ecosystem Components

15.3 Hadoop Ecosystem Components

Remember my big data platform blueprint? The blueprint has four stages: Ingest, store,

analyse and display.

Because of the Hadoop ecosystem” the different tools in these stages can work together

perfectly.

Here’s an example:

37

Figure 15.2: Connections between tools

You use Apache Kafka to ingest data, and store the it in HDFS. You do the analytics

with Apache Spark and as a backend for the display you store data in Apache HBase.

To have a working system you also need YARN for resource management. You also need

Zookeeper, a configuration management service to use Kafka and HBase

As you can see in the picture below each project is closely connected to the other.

Spark for instance, can directly access Kafka to consume messages. It is able to access

HDFS for storing or processing stored data.

It also can write into HBase to push analytics results to the front end.

The cool thing of such ecosystem is that it is easy to build in new functions.

Want to store data from Kafka directly into HDFS without using Spark?

No problem, there is a project for that. Apache Flume has interfaces for Kafka and

HDFS.

It can act as an agent to consume messages from Kafka and store them into HDFS. You

even do not have to worry about Flume resource management.

Flume can use Hadoop’s YARN resource manager out of the box.

38

Figure 15.3: Flume Integration

15.4 Hadoop Is Everywhere?

Although Hadoop is so popular it is not the silver bullet. It isn’t the tool that you should

use for everything.

Often times it does not make sense to deploy a Hadoop cluster, because it can be overkill.

Hadoop does not run on a single server.

You basically need at least five servers, better six to run a small cluster. Because of that.

the initial platform costs are quite high.

One option you have is to use a specialized systems like Cassandra, MongoDB or other

NoSQL DB’s for storage. Or you move to Amazon and use Amazon’s Simple Storage

Service, or S3.

Guess what the tech behind S3 is. Yes, HDFS. That’s why AWS also has the equivalent

to MapReduce named Elastic MapReduce.

The great thing about S3 is that you can start very small. When your system grows you

don’t have to worry about s3’s server scaling.

39

15.5 SHOULD YOU LEARN HADOOP?

Yes, I definitely recommend you to get to now how Hadoop works and how to use it. As

I have shown you in this article, the ecosystem is quite large.

Many big data projects use Hadoop or can interface with it. Thats why it is generally a

good idea to know as many big data technologies as possible.

Not in depth, but to the point that you know how they work and how you can use them.

Your main goal should be to be able to hit the ground running when you join a big data

project.

Plus, most of the technologies are open source. You can try them out for free.

How does a Hadoop System architecture look like

What tools are usually in a with Hadoop Cluster

Yarn Zookeeper HDFS Oozie Flume Hive

15.6 How to select Hadoop Cluster Hardware

40

16 Is ETL still relevant for

Analytics?

I talked about this in this podcast: https://anchor.fm/andreaskayy/embed/episodes/Is-

ETL-Dead-For-Data-Science–Big-Data—PoDS-039-e2b604

41

17 Docker

17.1 What is docker and what do you use it for —

available

Have you played around with Docker yet? If you’re a data science learner or a data

scientist you need to check it out!

It’s awesome because it simplifies the way you can set up develpoment environments for

data science. If you want to set up a dev environment you usually have to install a lot of

packages and tools.

17.1.1 Don’t Mess Up Your System

What this does is you basically mess up your operating system. If you’re a starter you

don’t know which packages you need to install. You don’t know which tools you need to

install.

If you want to for instance start with Jupyter notebooks you need to install that on your

PC somehow. Or you need to start installing tools like PyCharmor Anaconda.

All that gets added to your system and so you mess up your system more and more

and more. What Docker brings you, especially if you’re on a Mac or a Linux system is

simplicity.

17.1.2 Preconfigured Images

Because it is so easy to install on those systems. Another cool thing about docker images

is you can just serach them in the Docker store, download them and install them on your

system.

Runing them in a completely pre-configured environment. You don’t need to think about

stuff you go to the Docker library you search for deep learning GPU and Python.

42

You get a list of images you can download. You download one, start it up, you go to the

browser hit up the URL and just start coding.

Start doing the work. The only other thing you need to do is bind some drives to that

instance so you can exchange files. And then that’s it!

There is no way that you can crash or mess up your system. It’s all encapsulated into

Docker.Why this works is because Docker has natively access to your hardware.

17.1.3 Take It With You

It’s not a completely virtualized environment like a VirtualBox. An image has the upside

that you can take it wherever you want. So if your on your PC at home use that there.

Make a quick build, take the image and go somewhere else. Install the image which is

usually quite fast and just use it like you’re at home.

It’s that awesome!

17.2 Kubernetes Container Deployment

I am getting into Docker a lot more myself. For a bit different reasons.

What I’m looking for is using Docker with Kubernetes. Kubernets you can automate the

whole container deployment process.

The idea with is that you have a cluster of machines. Lets say you have 10 server cluster

and you run Kubernetes on them.

Kubernetes lets you spin up Docker containers on-demand to execute tasks. You can set

up how much resources like CPU, RAM, Network, Docker container can use.

You can basically spin up containers, on the cluster on demand. When ever you need to

do a analytics task.

Perfect for Data Science.

43

17.3 How to create, start,stop a Container

17.4 Docker micro services?

17.5 Kubernetes

17.6 Why and how to do Docker container

orchestration

Podcast about how data science learners use Docker (for data scientists): https://anchor.fm/andreaskayy/embed/episodes/Learn-

Data-Science-Go-Docker-e10n7u

44

18 REST APIs

Check out my podcast about how APIs rule the world: https://anchor.fm/andreaskayy/embed/episodes/How-

APIs-Rule-The-World–PoDS-033-e24ttq

18.1 HTTP Post/Get

18.2 API Design

18.3 Implementation

18.4 OAuth security

45

19 Databases

19.1 SQL Databases

19.1.1 Database Design

19.1.2 SQL Queries

19.1.3 Stored Procedures

19.1.4 ODBC/JDBC Server Connections

19.2 NoSQL Stores

19.2.1 KeyValue Stores (HBase)

19.2.2 Document Store HDFS — available

The Hadoop distributed file system, or HDFS, allows you to store files in Hadoop. The

difference between HDFS and other file systems like NTFS or EXT is that it is a dis-

tributed one.

What does that mean exactly?

A typical file system stores your data on the actual hard drive. It is hardware dependent.

If you have two disks then you need to format every disk with its own file system. They

are completely separate.

You then decide on which disk you physically store your data.

HDFS works different to a typical file system. HDFS is hardware independent.

46

Not only does it span over many disks in a server. It also spans over many servers.

HDFS will automatically place your files somewhere in the Hadoop server collective.

It will not only store your file, Hadoop will also replicate it two or three times (you can

define that). Replication means replicas of the file will be distributed to different servers.

Figure 19.1: HDFS Master and Data Nodes

This gives you superior fault tolerance. If one server goes down, then your data stays

available on a different server.

Another great thing about HDFS is, that there is no limit how big the files can be. You

can have server log files that are terabytes big.

How can files get so big? HDFS allows you to append data to files. Therefore, you can

continuously dump data into a single file without worries.

HDFS physically stores files different then a normal file system. It splits the file into

blocks.

These blocks are then distributed and replicated on the Hadoop cluster. The splitting

happens automatically.

In the configuration you can define how big the blocks should be. 128 megabyte or 1

gigabyte?

47

Figure 19.2: Distribution of Blocks for a 512MB File

No problem at all.

This mechanic of splitting a large file in blocks and distributing them over the servers is

great for processing. See the MapReduce section for an example.

19.2.3 Document Store MongoDB

19.2.4 Hive Warehouse

19.2.5 Impala

19.2.6 Kudu

19.2.7 Time Series Databases

DalmatinerDB InfluxDB Prometheus Riak TS OpenTSDB KairosDB Elasticsearch Druid

19.2.8 MPP Databases (Greenplum)

48

20 Data Processing / Analytics -

Frameworks

20.1 MapReduce

Since the early days of the Hadoop eco system, the MapReduce framework is one of the

main components of Hadoop alongside the Hadoop file system HDFS.

Google for instance used MapReduce to analyse stored html content of websites through

counting all the html tags and all the words and combinations of them (for instance

headlines). The output was then used to create the page ranking for Google Search.

That was when everybody started to optimise his website for the google search. Serious

search engine optimisation was borne. That was the year 2004.

How MapReduce is working is, that it processes data in two phases: The map phase and

the reduce phase.

In the map phase, the framework is reading data from HDFS. Each dataset is called an

input record.

Then there is the reduce phase. In the reduce phase, the actual computation is done

and the results are stored. The storage target can either be a database or back HDFS or

something else.

After all it’s Java – so you can implement what you like.

The magic of MapReduce is how the map and reduce phase are implemented and how

both phases are working together.

The map and reduce phases are parallelised. What that means is, that you have multiple

map phases (mappers) and reduce phases (reducers) that can run in parallel on your

cluster machines.

Here’s an example how such a map and reduce process works with data:

49

Figure 20.1: Mapping of input files and reducing of mapped records

50

20.1.1 How does MapReduce work – available

First of all, the whole map and reduce process relies heavily on using key/value pairs.

That’s what the mappers are for.

In the map phase input data, for instance a file, gets loaded and transformed into

key/value pairs.

When each map phase is done it sends the created key/value pairs to the reducers where

they are getting sorted by key. This means, that an input record for the reduce phase is

a list of values from the mappers that all have the same key.

Then the reduce phase is doing the computation of that key and its values and outputting

the results.

How many mappers and reducers can you use in parallel? The number of parallel map

and reduce processes depends on how many CPU cores you have in your cluster. Every

mapper and every reducer is using one core.

This means that the more CPU cores you actually have, the more mappers you can use,

the faster the extraction process can be done. The more reducers you are using the faster

the actual computation is being done.

To make this more clear, I have prepared an example:

20.1.2 Example

As I said before, MapReduce works in two stages, map and reduce. Often these stages

are explained with a word count task.

Personally, I hate this example because counting stuff is to trivial and does not really

show you what you can do with MapReduce. Therefore, we are going to use a more real

world use-case from the world of the internet of things (IoT).

IoT applications create an enormous amount of data that has to be processed. This data

is generated by physical sensors who take measurements, like room temperature at 8.00

o’Clock.

Every measurement consists of a key (the timestamp when the measurement has been

taken) and a value (the actual value measured by the sensor).

Because you usually have more than one sensor on your machine, or connected to your

system, the key has to be a compound key. Compound keys contain additionally to the

51

measurement time information about the source of the signal.

But, let’s forget about compound keys for now. Today we have only one sensor. Each

measurement outputs key/value pairs like: Timestamp-Value.

The goal of this exercise is to create average daily values of that sensor’s data.

The image below shows how the map and reduce process works.

First, the map stage loads unsorted data (input records) from the source (e.g. HDFS) by

key and value (key:2016-05-01 01:02:03, value:1).

Then, because the goal is to get daily averages, the hour:minute:second information is

cut from the timestamp.

That is all that happens in the map phase, nothing more.

After all parallel map phases are done, each key/value pair gets sent to the one reducer

who is handling all the values for this particular key.

Every reducer input record then has a list of values and you can calculate (1+5+9)/3,

(2+6+7)/3 and (3+4+8)/3. That’s all.

Figure 20.2: MapReduce Example of Time Series Data

What do you think you need to do to generate minute averages?

Yes, you need to cut the key differently. You then would need to cut it like this: “2016-

05-01 01:02”. Keeping the Hour and minute information in the key.

What you can also see is, why map reduce is so great for doing parallel work. In this case,

the map stage could be done by nine mappers in parallel because each map is independent

from all the others.

52

The reduce stage could still be done by three tasks in parallel. One each for orange, blue

and one for green.

That means, if your dataset would be 10 times as big and you’d have 10 times the

machines, the time to do the calculation would be the same.

20.1.3 What is the limitation of MapReduce? – available

MapReduce is awesome for simpler analytics tasks, like counting stuff. It just has one

flaw: It has only two stages Map and Reduce.

Figure 20.3: The Map Reduce Process

First MapReduce loads the data from HDFS into the mapping function. There you

prepare the input data for the processing in the reducer. After the reduce is finished the

results get written to the data store.

The problem with MapReduce is that there is no simple way to chain multiple map and

reduce processes together. At the end of each reduce process the data must be stored

somewhere.

This fact makes it very hard to do complicated analytics processes. You would need to

chain MapReduce jobs together.

Chaining jobs with storing and loading intermediate results just makes no sense.

Another issue with MapReduce is that it is not capable of streaming analytics. Jobs take

some time to spin up, do the analytics and shut down. Basically Minutes of wait time

are totally normal.

This is a big negative point in a more and more real time data processing world.

20.2 Apache Spark

I talked about the three methods of data streaming in this podcast: https://anchor.fm/andreaskayy/embed/episodes/Three-

Methods-of-Streaming-Data-e15r6o

53

20.2.1 What is the difference to MapReduce? – available

Spark is a complete in memory framework. Data gets loaded from, for instance hdfs, into

the memory of workers.

There is no longer a fixed map and reduce stage. Your code can be as complex as you

want.

Once in memory, the input data and the intermediate results stay in memory (until the

job finishes). They do not get written to a drive like with MapReduce.

This makes Spark the optimal choice for doing complex analytics. It allows you for

instance to do Iterative processes. Modifying a dataset multiple times in order to create

an output is totally easy.

Streaming analytics capability is also what makes spark so great. Spark has natively the

option to schedule a job to run every X seconds or X milliseconds.

As a result, Spark can deliver you results from streaming data in “real time”.

20.2.2 How does Spark fit to Hadoop? – available

There are some very misleading articles out there titled Spark or Hadoop, Spark is better

than Hadoop or even Spark is replacing Hadoop.

Figure 20.4: Hadoop vs Spark capabilities

So, it’s time to show you the differences between Spark and Hadoop. After this you will

know when and for what you should use Spark and Hadoop.

You’ll also understand why Hadoop or Spark is the totally wrong question.

20.2.3 Where’s the difference?

To make it clear how Hadoop differs from Spark I created this simple feature table:

54

Hadoop is used to store data in the Hadoop Distributed File System (HDFS). It can

analyse the stored data with MapReduce and manage resources with YARN.

However, Hadoop is more than just storage, analytics and resource management. There’s

a whole eco system of tools around the Hadoop core. I’ve written about tis eco system

in this article: What is Hadoop and why is it so freakishly popular. You should check it

out as well.

Compared to Hadoop, Spark is “just” an analytics framework. It has no storage capa-

bility. Although it has a standalone resource management, you usually don’t use that

feature.

20.2.4 Spark and Hadoop is a perfect fit

So, if Hadoop and Spark are not the same things, can they work together?

Absolutely! Here’s how the first picture will look if you combine Hadoop with Spark:

As Storage you use the Hadoop distributed file system. Analytics is done with Apache

Spark and Yarn is taking care of the resource management.

Why does that work so well together?

From a platform architecture perspective, Hadoop and Spark are usually managed on the

same cluster. This means on each server where a HDFS data node is running, a spark

worker thread runs as well.

In distributed processing, network transfer between machines is a large bottle neck.

Transferring data within a machine reduces this traffic significantly.

Spark is able to determine on which data node the needed data is stored. This allows a

direct load of the data from the local storage into the memory of the machine.

This reduces network traffic a lot.

20.2.5 Spark on YARN:

You need to make sure that your physical resources are distributed perfectly between

the services. This is especially the case when you run Spark workers with other Hadoop

services on the same machine.

It just would not make sense to have two resource managers managing the same server’s

resources. Sooner or later they will get in each others way.

55

That’s why the Spark standalone resource manager is seldom used.

So, the question is not Spark or Hadoop. The question has to be: Should you use Spark

or MapReduce alongside Hadoop’s HDFS and YARN.

20.2.6 My simple rule of thumb:

If you are doing simple batch jobs like counting values or doing calculating averages: Go

with MapReduce.

If you need more complex analytics like machine learning or fast stream processing: Go

with Apache Spark.

20.2.7 Available Languages – available

Spark jobs can be programmed in a variety of languages. That makes creating analytic

processes very user-friendly for data scientists.

Spark supports Python, Scala and Java. With the help of SparkR you can even connect

your R program to a Spark cluster.

If you are a data scientist who is very familiar with Python just use Python, its great. If

you know how to code Java I suggest you start using Scala.

Spark jobs are easier to code in Scala than in Java. In Scala you can use anonymous

functions to do processing.

This results in less overhead, it is a much cleaner, simpler code.

With Java 8 simplified function calls were introduced with lambda expressions. Still, a

lot of people, including me prefer Scala over Java.

20.2.8 How to do stream processing

20.2.9 How to do batch processing

20.2.10 How does Spark use data from Hadoop – available

Another thing is data locality. I always make the point, that processing data locally

where it is stored is the most efficient thing to do.

56

That’s exactly what Spark is doing. You can and should run Spark workers directly on

the data nodes of your Hadoop cluster.

Spark can then natively identify on what data node the needed data is stored. This

enables Spark to use the worker running on the machine where the data is stored to load

the data into the memory.

Figure 20.5: Spark Using Hadoop Data Locality

The downside of this setup is that you need more expensive servers. Because Spark

processing needs stronger servers with more RAM and CPUs than a “pure” Hadoop

setup.

57

20.3 What is a RDD and what is a DataFrame?

20.4 Spark coding with Scala

20.5 Spark coding with Python

20.6 How and why to use SparkSQL?

20.7 Machine Learning on Spark? (Tensor Flow)

20.8 MLlib:

The machine learning library MLlib is included in Spark so there is often no need to

import another library.

I have to admit because I am not a data scientist I am not an expert in machine learning.

From what I have seen and read though the machine learning framework MLlib is a nice

treat for data scientists wanting to train and apply models with Spark.

20.9 Spark Setup – available

From a solution architect’s point of view Spark is a perfect fit for Hadoop big data

platforms. This has a lot to do with cluster deployment and management.

Companies like Cloudera, MapR or Hortonworks include Spark into their Hadoop distri-

butions. Because of that, Spark can be deployed and managed with the clusters Hadoop

management web fronted.

This makes the process for deploying and configuring a Spark cluster very quick and

admin friendly.

58

20.10 Spark Resource Management – available

When running a computing framework you need resources to do computation: CPU time,

RAM, I/O and so on. Out of the box Spark can manage resources with it’s stand-alone

resource manager.

If Spark is running in an Hadoop environment you don’t have to use Spark’s own stand-

alone resource manager. You can configure Spark to use Hadoop’s YARN resource man-

agement.

Why would you do that? It allows YARN to efficiently allocate resources to your Hadoop

and Spark processes.

Having a single resource manager instead of two independent ones makes it a lot easier

to configure the resource management.

Figure 20.6: Spark Resource Management With YARN

59

21 Apache Kafka

21.1 Why a message queue tool?

21.2 Kakfa architecture

21.3 What are topics

21.4 What does Zookeeper have to do with Kafka

21.5 How to produce and consume messages

My YouTube video how to set up Kafka at home: https://youtu.be/7F9tBwTUSeY

My YouTube video how to write to Kafka: https://youtu.be/RboQBZvZCh0

60

22 Machine Learning

My podcast about how to do machine learning in production: https://anchor.fm/andreaskayy/embed/episodes/Machine-

Learning-In-Production-e11bbk

22.1 Training and Applying models

22.2 What is deep learning

22.3 How to do Machine Learning in production —

available

Machine learning in production is using stream and batch processing. In the batch

processing layer you are creating the models, because you have all the data available for

training.

In the stream in processing layer you are using the created models, you are applying them

to new data.

The idea that you need to incorporate is this is a constant a constant cycle. Training,

applying, re-training, pushing into production and applying.

What you don’t want to do is, you don’t want to do this manually. You need to figure out

a process of automatic retraining and automatic pushing to into production of models.

In the retraining phase the system automatically evaluates the training. If the model no

longer fits it works as long as it needs to create a good model.

After the evaluation of the model is complete and it’s good, the model gets pushed into

production. Into the stream processing.

61

22.4 Why machine learning in production is harder

then you think – available

How to automate machine learning is something that drives me day in and day out.

What you do in development or education is, that you create a model and fit it to the

data. Then that model is basically done forever.

Where I’m coming from, the IoT world, the problem is that machines are very different.

They behave very different and experience wear.

22.5 Models Do Not Work Forever

Machines have certain processes that decrease the actual health of the machine. Machine

wear is a huge issue. Models that that are built on top of a good machine don’t work

forever.

When the Machine wears out, the models need to be adjusted. They need to be main-

tained, retrained.

22.6 Where The Platforms That Support This?

Automatic re-training and re-deploying is a very big issue, a very big problem for a lot of

companies. Because most existing platforms don’t have this capability (I actually haven’t

seen one until now).

Look at AWS machine learning for instance. The process is: build, train, tune deploy.

Where’s the loop of retraining?

You can create models and then use them in production. But this loop is almost nowhere

to be seen.

It is a very big issue that needs to be solved. If you want to do machine learning in

production you can start with manual interaction of the training, but at some point you

need to automate everything.

62

22.7 Training Parameter Management

To train a model you are manipulating input parameters of the models.

Take deep learning for instance. To train you are manipulating for instance:

How many layers do you use. The depth of the layers, which means how many neurons

you have in a layer. What activation function you use, how long are you training and so

on.

You also need to keep track of what data you used to train which model.

All those parameters need to be manipulated automatically, models trained and tested.

To do all that, you basically need a database that keeps track of those variables.

How to automate this, for me, is like the big secret. I am still working on figuring it out.

22.8 What’s Your Solution?

Did you already have the problem of automatic re-training and deploying of models as

well?

Were you able to use a cloud platform like Google, AWS or Azure?

It would be really awesome if you share your experience :)

22.9 How to convince people machine learning works

— available

Many people still are not convinced that machine learning works reliably. But they want

analytics insight and most of the time machine learning is the way to go.

This means, when you are working with customers you need to do a lot of convincing.

Especially if they are not into machine learning themselves.

But it’s actually quite easy.

63

22.10 No Rules, No Physical Models

Many people are still under the impression that analytics only works when it’s based on

physics. When there are strict mathematical rules to a problem.

Especially in engineering heavy countries like Germany this is the norm:

“Sere has to be a Rule for Everysing!” (imagine a German accent) When you’re engi-

neering you are calculating stuff based on physics and not based on data. If you are

constructing an airplaine wing, you better make sure to use calculations so it doesn’t fall

off.

And that’s totally fine.

Keep doing that!

Machine learning has been around for decades. It didn’t quite work as good as people

hoped. We have to admit that. But there is this preconception that it still doesn’t work.

Which is not true: Machine learning works.

Somehow you need to convince people that it is a viable approach. That learning from

data to make predictions is working perfectly.

22.11 You Have The Data. USE IT!

As a data scientist you have one ace up your sleeve, it’s the obvious one:

It’s the data and it’s statistics.

You can use that data and those statistics to counter peoples preconceptions. It’s very

powerful if someone says: “This doesn’t work”

You bring the data. You show the statistics and you show that it works reliably.

A lot of discussions end there.

Data doesn’t lie. You can’t fight data. The data is always right.

64

22.12 Data is Stronger Than Opinions

This is also why I believe that autonomous driving will come quicker than many of us

think. Because a lot of people say, they are not safe. That you cannot rely on those cars.

The thing is: When you have the data you can do the statistics.

You can show people that autonomous driving really works reliably. You will see, the

question of: Is this is this allowed or is this not allowed? Will be gone quicker than you

think.

Because goverenment agencies can start testing the algorithms based on predefined sce-

narios. They can run benchmarks and score the cars performance.

All those opinions, if it works, or if it doesn’t work, they will be gone.

The motor agency has the statistics. The stats show people how good cars work.

Companies like Tesla, they have it very easy. Because the data is already there.

They just need to show us that the algorithms work. The end.

65

23 Data Visualization

23.1 Android & IOS

23.2 How to design APIs for mobile apps

23.3 How to use Webservers to display content

This section does not contain any text that’s why the page is messed up

66

23.3.1 Tomcat

23.3.2 Jetty

23.3.3 NodeRED

23.3.4 React

23.4 Business Intelligence Tools

23.4.1 Tableau

23.4.2 PowerBI

23.4.3 Quliksense

23.5 Identity & Device Management

23.5.1 What is a digital twin?

23.5.2 Active Directory

67

Part III

Building A Data Platform Example

68

24 My Big Data Platform Blueprint

Some time ago I have created a simple and modular big data platform blueprint for

myself. It is based on what I have seen in the field and read in tech blogs all over the

internet.

Today I am going to share it with you.

Why do I believe it will be super useful to you?

Because, unlike other blueprints it is not focused on technology. It is based on four

common big data platform design patterns.

Following my blueprint will allow you to create the big data platform that fits exactly your

needs. Building the perfect platform will allow data scientists to discover new insights.

It will enable you to perfectly handle big data and allow you to make data driven decisions.

THE BLUEPRINT The blueprint is focused on the four key areas: Ingest, store,

analyse and display.

Figure 24.1: Platfrom Blueprint

69

Having the platform split like this turns it it a modular platform with loosely coupled

interfaces.

Why is it so important to have a modular platform?

If you have a platform that is not modular you end up with something that is fixed or

hard to modify. This means you can not adjust the platform to changing requirements

of the company.

Because of modularity it is possible to switch out every component, if you need it.

Now, lets talk more about each key area.

24.1 Ingest

Ingestion is all about getting the data in from the source and making it available to later

stages. Sources can be everything form tweets, server logs to IoT sensor data like from

cars.

Sources send data to your API Services. The API is going to push the data into a

temporary storage.

The temporary storage allows other stages simple and fast access to incoming data.

A great solution is to use messaging queue systems like Apache Kafka, RabbitMQ or

AWS Kinesis. Sometimes people also use caches for specialised applications like Redis.

A good practice is that the temporary storage follows the publish, subscribe pattern.

This way APIs can publish messages and Analytics can quickly consume them.

24.2 Analyse / Process

The analyse stage is where the actual analytics is done. Analytics, in the form of stream

and batch processing.

Streaming data is taken from ingest and fed into analytics. Streaming analyses the “live”

data thus, so generates fast results.

As the central and most important stage, analytics also has access to the big data storage.

Because of that connection, analytics can take a big chunk of data and analyse it.

70

This type of analysis is called batch processing. It will deliver you answers for the big

questions.

To learn more about stream and batch processing read my blog post: How to Create New

and Exciting Big Data Aided Products

The analytics process, batch or streaming, is not a one way process. Analytics also can

write data back to the big data storage.

Often times writing data back to the storage makes sense. It allows you to combine

previous analytics outputs with the raw data.

Analytics insight can give meaning to the raw data when you combine them. This

combination will often times allow you to create even more useful insight.

A wide variety of analytics tools are available. Ranging from MapReduce or AWS Elastic

MapReduce to Apache Spark and AWS lambda.

24.3 Store

This is the typical big data storage where you just store everything. It enables you to

analyse the big picture.

Most of the data might seem useless for now, but it is of upmost importance to keep it.

Throwing data away is a big no no.

Why not throw something away when it is useless?

Although it seems useless for now, data scientists can work with the data. They might

find new ways to analyse the data and generate valuable insight from it.

What kind of systems can be used to store big data?

Systems like Hadoop HDFS, Hbase, Amazon S3 or DynamoDB are a perfect fit to store

big data.

Check out my podcast how to decide between SQL and NoSQL: https://anchor.fm/andreaskayy/embed/episodes/NoSQL-

Vs-SQL-How-To-Choose-e12f1o

71

24.4 Display

Displaying data is as important as ingesting, storing and analysing it. People need to be

able to make data driven decisions.

This is why it is important to have a good visual presentation of the data. Sometimes

you have a lot of different use cases or projects using the platform.

It might not be possible for you to build the perfect UI that fits everyone. What you

should do in this case is enable others to build the perfect UI themselves.

How to do that? By creating APIs to access the data and making them available to

developers.

Either way, UI or API the trick is to give the display stage direct access to the data in

the big data cluster. This kind of access will allow the developers to use analytics results

as well as raw data to build the the perfect application.

72

25 Lambda Architecture

25.1 Batch Processing

Ask the big questions. Remember your last yearly tax statement?

You break out the folders. You run around the house searching for the receipts.

All that fun stuff.

When you finally found everything you fill out the form and send it on its way.

Doing the tax statement is a prime example of a batch process.

Data comes in and gets stored, analytics loads the data from storage and creates an

output (insight):

Figure 25.1: Batch Processing Pipeline

Batch processing is something you do either without a schedule or on a schedule (tax

statement). It is used to ask the big questions and gain the insights by looking at the big

picture.

To do so, batch processing jobs use large amounts of data. This data is provided by

storage systems like Hadoop HDFS.

They can store lots of data (petabytes) without a problem.

Results from batch jobs are very useful, but the execution time is high. Because the

amount of used data is high.

It can take minutes or sometimes hours until you get your results.

73

25.2 Stream Processing

Gain instant insight into your data.

Streaming allows users to make quick decisions and take actions based on “real-time”

insight. Contrary to batch processing, streaming processes data on the fly, as it comes

in.

With streaming you don’t have to wait minutes or hours to get results. You gain instant

insight into your data.

In the batch processing pipeline, the analytics was after the data storage. It had access

to all the available data.

Stream processing creates insight before the data storage. It has only access to fragments

of data as it comes in.

As a result the scope of the produced insight is also limited. Because the big picture is

missing.

Figure 25.2: Stream Processing Pipeline

Only with streaming analytics you are able to create advanced services for the customer.

Netflix for instance incorporated stream processing into Chuckwa V2.0 and the new

Keystone pipeline.

One example of advanced services through stream processing is the Netflix “Trending

Now” feature. Check out the Netflix case study.

25.3 Should you do stream or batch processing?

It is a good idea to start with batch processing. Batch processing is the foundation of

every good big data platform.

A batch processing architecture is simple, and therefore quick to set up. Platform sim-

plicity means, it will also be relatively cheap to run.

A batch processing platform will enable you to quickly ask the big questions. They will

give you invaluable insight into your data and customers.

74

When the time comes and you also need to do analytics on the fly, then add a streaming

pipeline to your batch processing big data platform.

25.4 Lambda Architecture Alternative

25.4.1 Kappa Architecture

25.4.2 Kappa Architecture with Kudu

75

26 Thoughts On Choosing The

Target Environment

26.1 Cloud vs On-Premise

26.2 Cloud Native or Independent Vendors

76

27 Thoughts On Choosing A

Development Environment

27.1 Cloud As Dev Environment

27.2 Local Dev Environment

27.3 Data Architecture

27.3.1 Source Data

27.3.2 Analytics Requirements For Streaming

27.3.3 Analytics Requirements For Batch Processing

27.3.4 Data Visualization

27.4 Milestone 1 — Tool Decisions

77

Part IV

Case Studies

78

28 How I do Case Studies

28.1 Data Science @Airbnb

https://medium.com/airbnb-engineering/airbnb-engineering-infrastructure/home

Airbnb Engineering Blog: https://medium.com/airbnb-engineering

Data Infrastructure: https://medium.com/airbnb-engineering/data-infrastructure-at-airbnb-8adfb34f169c

Scaling the serving tier: https://medium.com/airbnb-engineering/unlocking-horizontal-scalability-in-our-web-serving-tier-d907449cdbcf

Druid Analytics: https://medium.com/airbnb-engineering/druid-airbnb-data-platform-601c312f2a4c

Spark Streaming for logging events: https://medium.com/airbnb-engineering/scaling-spark-streaming-for-logging-event-ingestion-4a03141d135d

-Druid Wiki: https://en.wikipedia.org/wiki/Apache_Druid

28.2 Data Sciecne @Baidu

https://www.slideshare.net/databricks/spark-sql-adaptive-execution-unleashes-the-power-of-cluster-in-large-scale-with-chenzhao-guo-and-carson-wang

28.3 Data Sciecne @Blackrock

https://www.slideshare.net/DataStax/maintaining-consistency-across-data-centers-randy-fradin-blackrock-cassandra-summit-2016

28.4 Data Sciecne @BMW

Big Data in der Automobilindustrie – Daten aus dem Fahrzeug nutzen https://www.

unibw.de/code.../ws3_bigdata_vortrag_widmann.pdf

79

https://medium.com/airbnb-engineering/airbnb-engineering-infrastructure/home
https://medium.com/airbnb-engineering
https://medium.com/airbnb-engineering/data-infrastructure-at-airbnb-8adfb34f169c
https://medium.com/airbnb-engineering/unlocking-horizontal-scalability-in-our-web-serving-tier-d907449cdbcf
https://medium.com/airbnb-engineering/druid-airbnb-data-platform-601c312f2a4c
https://medium.com/airbnb-engineering/scaling-spark-streaming-for-logging-event-ingestion-4a03141d135d
https://en.wikipedia.org/wiki/Apache_Druid
https://www.slideshare.net/databricks/spark-sql-adaptive-execution-unleashes-the-power-of-cluster-in-large-scale-with-chenzhao-guo-and-carson-wang
https://www.slideshare.net/DataStax/maintaining-consistency-across-data-centers-randy-fradin-blackrock-cassandra-summit-2016
https://www.unibw.de/code.../ws3_bigdata_vortrag_widmann.pdf
https://www.unibw.de/code.../ws3_bigdata_vortrag_widmann.pdf

28.5 Data Sciecne @Booking.com

https://www.slideshare.net/ConfluentInc/data-streaming-ecosystem-management-at-bookingcom?

ref=https://www.confluent.io/kafka-summit-sf18/data-streaming-ecosystem-management

https://www.slideshare.net/SparkSummit/productionizing-behavioural-features-for-machine-learning-with-apache-spark-streaming-with-ben-teeuwen-and-roman-studenikin

https://www.slideshare.net/ConfluentInc/data-streaming-ecosystem-management-at-bookingcom?

ref=https://www.confluent.io/kafka-summit-sf18/data-streaming-ecosystem-management

Druid: https://towardsdatascience.com/introduction-to-druid-4bf285b92b5a

Kafka Architecture: https://data-flair.training/blogs/kafka-architecture/

Confluent Platform: https://www.confluent.io/product/confluent-platform/

28.6 Data Sciecne @CERN

https://en.wikipedia.org/wiki/Large_Hadron_Collider

http://www.lhc-facts.ch/index.php?page=datenverarbeitung

https://openlab.cern/sites/openlab.web.cern.ch/files/2018-09/2017_ESADE_Madrid_

Big_Data.pdf

https://openlab.cern/sites/openlab.web.cern.ch/files/2018-05/kubeconeurope2018-cern-180507122303.

pdf

https://www.slideshare.net/SparkSummit/next-cern-accelerator-logging-service-with-jakub-wozniak

https://databricks.com/session/the-architecture-of-the-next-cern-accelerator-logging-service

http://opendata.cern.ch

https://gobblin.apache.org

https://www.slideshare.net/databricks/cerns-next-generation-data-analysis-platform-with-apache-spark-with-enric-tejedor

https://www.slideshare.net/SparkSummit/realtime-detection-of-anomalies-in-the-database-infrastructure-using-apache-spark-with-daniel-lanza-and-prasanth-kothuri

28.7 Data Sciecne @Disney

https://medium.com/disney-streaming/delivering-data-in-real-time-via-auto-scaling-kinesis-streams-72a0236b2cd9

80

https://www.slideshare.net/ConfluentInc/data-streaming-ecosystem-management-at-bookingcom?ref=https://www.confluent.io/kafka-summit-sf18/data-streaming-ecosystem-management
https://www.slideshare.net/ConfluentInc/data-streaming-ecosystem-management-at-bookingcom?ref=https://www.confluent.io/kafka-summit-sf18/data-streaming-ecosystem-management
https://www.slideshare.net/SparkSummit/productionizing-behavioural-features-for-machine-learning-with-apache-spark-streaming-with-ben-teeuwen-and-roman-studenikin
https://www.slideshare.net/ConfluentInc/data-streaming-ecosystem-management-at-bookingcom?ref=https://www.confluent.io/kafka-summit-sf18/data-streaming-ecosystem-management
https://www.slideshare.net/ConfluentInc/data-streaming-ecosystem-management-at-bookingcom?ref=https://www.confluent.io/kafka-summit-sf18/data-streaming-ecosystem-management
https://towardsdatascience.com/introduction-to-druid-4bf285b92b5a
https://data-flair.training/blogs/kafka-architecture/
https://www.confluent.io/product/confluent-platform/
https://en.wikipedia.org/wiki/Large_Hadron_Collider
http://www.lhc-facts.ch/index.php?page=datenverarbeitung
https://openlab.cern/sites/openlab.web.cern.ch/files/2018-09/2017_ESADE_Madrid_Big_Data.pdf
https://openlab.cern/sites/openlab.web.cern.ch/files/2018-09/2017_ESADE_Madrid_Big_Data.pdf
https://openlab.cern/sites/openlab.web.cern.ch/files/2018-05/kubeconeurope2018-cern-180507122303.pdf
https://openlab.cern/sites/openlab.web.cern.ch/files/2018-05/kubeconeurope2018-cern-180507122303.pdf
https://www.slideshare.net/SparkSummit/next-cern-accelerator-logging-service-with-jakub-wozniak
https://databricks.com/session/the-architecture-of-the-next-cern-accelerator-logging-service
http://opendata.cern.ch
https://gobblin.apache.org
https://www.slideshare.net/databricks/cerns-next-generation-data-analysis-platform-with-apache-spark-with-enric-tejedor
https://www.slideshare.net/SparkSummit/realtime-detection-of-anomalies-in-the-database-infrastructure-using-apache-spark-with-daniel-lanza-and-prasanth-kothuri
https://medium.com/disney-streaming/delivering-data-in-real-time-via-auto-scaling-kinesis-streams-72a0236b2cd9

28.8 Data Sciecne @Drivetribe

https://berlin-2017.flink-forward.org/kb_sessions/drivetribes-kappa-architecture-with-apache-flink/

https://www.slideshare.net/FlinkForward/flink-forward-berlin-2017-aris-kyriakos-koliopoulos-drivetribes-kappa-architecture-with-apache-flink

28.9 Data Sciecne @Dropbox

https://blogs.dropbox.com/tech/2019/01/finding-kafkas-throughput-limit-in-dropbox-infrastructure/

28.10 Data Sciecne @Ebay

https://www.slideshare.net/databricks/moving-ebays-data-warehouse-over-to-apache-spark-spark-as-core-etl-platform-at-ebay-with-kim-curtis-and-brian-knauss

https://www.slideshare.net/databricks/analytical-dbms-to-apache-spark-auto-migration-framework-with-edward-zhang-and-lipeng-zhu

28.11 Data Sciecne @Expedia

https://www.slideshare.net/BrandonOBrien/spark-streaming-kafka-best-practices-w-brandon-obrien

https://www.slideshare.net/Naveen1914/brandon-obrien-streamingdata

28.12 Data Sciecne @Facebook

https://code.fb.com/core-data/apache-spark-scale-a-60-tb-production-use-case/

28.13 Data Sciecne @@Grammarly

https://www.slideshare.net/databricks/building-a-versatile-analytics-pipeline-on-top-of-apache-spark-with-mikhail-chernetsov

28.14 Data Sciecne @ING Fraud

https://sf-2017.flink-forward.org/kb_sessions/streaming-models-how-ing-adds-models-at-runtime-to-catch-fraudsters/

81

https://berlin-2017.flink-forward.org/kb_sessions/drivetribes-kappa-architecture-with-apache-flink/
https://www.slideshare.net/FlinkForward/flink-forward-berlin-2017-aris-kyriakos-koliopoulos-drivetribes-kappa-architecture-with-apache-flink
https://blogs.dropbox.com/tech/2019/01/finding-kafkas-throughput-limit-in-dropbox-infrastructure/
https://www.slideshare.net/databricks/moving-ebays-data-warehouse-over-to-apache-spark-spark-as-core-etl-platform-at-ebay-with-kim-curtis-and-brian-knauss
https://www.slideshare.net/databricks/analytical-dbms-to-apache-spark-auto-migration-framework-with-edward-zhang-and-lipeng-zhu
https://www.slideshare.net/BrandonOBrien/spark-streaming-kafka-best-practices-w-brandon-obrien
https://www.slideshare.net/Naveen1914/brandon-obrien-streamingdata
https://code.fb.com/core-data/apache-spark-scale-a-60-tb-production-use-case/
https://www.slideshare.net/databricks/building-a-versatile-analytics-pipeline-on-top-of-apache-spark-with-mikhail-chernetsov
https://sf-2017.flink-forward.org/kb_sessions/streaming-models-how-ing-adds-models-at-runtime-to-catch-fraudsters/

28.15 Data Sciecne @Instagram

https://www.slideshare.net/SparkSummit/lessons-learned-developing-and-managing-massive-300tb-apache-spark-pipelines-in-production-with-brandon-carl

28.16 Data Sciecne @LinkedIn

https://engineering.linkedin.com/teams/data#0

http://www.bigdatausecases.info/companies/linkedin

28.17 Data Sciecne @Lyft

https://eng.lyft.com/running-apache-airflow-at-lyft-6e53bb8fccff

28.18 Data Sciecne @NASA

http://sites.nationalacademies.org/cs/groups/ssbsite/documents/webpage/ssb_

182893.pdf

https://esip.figshare.com/articles/Apache_Science_Data_Analytics_Platform/

5786421

http://www.socallinuxexpo.org/sites/default/files/presentations/OnSightCloudArchitecture-scale14x.

pdf

https://www.slideshare.net/SparkSummit/spark-at-nasajplchris-mattmann?qid=

90968554-288e-454a-b63a-21a45cfc897d&v=&b=&from_search=4

https://en.m.wikipedia.org/wiki/Hierarchical_Data_Format

28.19 Data Science @Netflix – available

Netflix revolutionized how we watch movies and tv. Currently over 75 million users watch

125 million hours of Netflix content every day!

Netflix’s revenue comes from a monthly subscription service. So, the goal for Netflix is

to keep you subscribed and to get new subscribers.

82

https://www.slideshare.net/SparkSummit/lessons-learned-developing-and-managing-massive-300tb-apache-spark-pipelines-in-production-with-brandon-carl
https://engineering.linkedin.com/teams/data#0
http://www.bigdatausecases.info/companies/linkedin
https://eng.lyft.com/running-apache-airflow-at-lyft-6e53bb8fccff
http://sites.nationalacademies.org/cs/groups/ssbsite/documents/webpage/ssb_182893.pdf
http://sites.nationalacademies.org/cs/groups/ssbsite/documents/webpage/ssb_182893.pdf
https://esip.figshare.com/articles/Apache_Science_Data_Analytics_Platform/5786421
https://esip.figshare.com/articles/Apache_Science_Data_Analytics_Platform/5786421
http://www.socallinuxexpo.org/sites/default/files/presentations/OnSightCloudArchitecture-scale14x.pdf
http://www.socallinuxexpo.org/sites/default/files/presentations/OnSightCloudArchitecture-scale14x.pdf
https://www.slideshare.net/SparkSummit/spark-at-nasajplchris-mattmann?qid=90968554-288e-454a-b63a-21a45cfc897d&v=&b=&from_search=4
https://www.slideshare.net/SparkSummit/spark-at-nasajplchris-mattmann?qid=90968554-288e-454a-b63a-21a45cfc897d&v=&b=&from_search=4
https://en.m.wikipedia.org/wiki/Hierarchical_Data_Format

To achieve this, Netflix is licensing movies from studios as well as creating its own original

movies and tv series.

But offering new content is not everything. What is also very important is, to keep you

watching content that already exists.

To be able to recommend you content, Netflix is collecting data from users. And it is

collecting a lot.

Currently, Netflix analyses about 500 billion user events per day. That results in a

stunning 1.3 petabytes every day.

All this data allows Netflix to build recommender systems for you. The recommenders

are showing you content that you might like, based on your viewing habits, or what is

currently trending.

The Netflix batch processing pipeline When Netflix started out, they had a very

simple batch processing system architecture.

The key components were Chuckwa, a scalable data collection system, Amazon S3 and

Elastic MapReduce.

Figure 28.1: Old Netflix Batch Processing Pipeline

Chuckwa wrote incoming messages into Hadoop sequence files, stored in Amazon S3.

These files then could be analysed by Elastic MapReduce jobs.

Netflix batch processing pipeline Jobs were executed regularly on a daily and hourly

basis. As a result, Netflix could learn how people used the services every hour or once a

day.

Know what customers want: Because you are looking at the big picture you can

create new products. Netflix uses insight from big data to create new tv shows and

83

movies.

They created House of Cards based on data. There is a very interesting Ted talk about

this you should watch:

How to use data to make a hit TV show — Sebastian Wernicke:

Batch processing also helps Netflix to know the exact episode of a TV show that gets you

hooked. Not only globally but for every country where Netflix is available.

Check out the article from TheVerge

They know exactly what show works in what country and what show does not.

It helps them create shows that work in everywhere or select the shows to license in

different countries. Germany for instance does not have the full library that Americans

have :(

We have to put up with only a small portion of tv shows and movies. If you have to

select, why not select those that work best.

Batch processing is not enough As a data platform for generating insight the

Cuckwa pipeline was a good start. It is very important to be able to create hourly

and daily aggregated views for user behavior.

To this day Netflix is still doing a lot of batch processing jobs.

The only problem is: With batch processing you are basically looking into the past.

For Netflix, and data driven companies in general, looking into the past is not enough.

They want a live view of what is happening.

The trending now feature One of the newer Netflix features is “Trending now”. To

the average user it looks like that “Trending Now” means currently most watched.

This is what I get displayed as trending while I am writing this on a Saturday morning

at 8:00 in Germany. But it is so much more.

What is currently being watched is only a part of the data that is used to generate

“Trending Now”.

“Trending now” is created based on two types of data sources: Play events and Impression

events.

84

Figure 28.2: Netflix Trending Now Feature

What messages those two types actually include is not really communicated by Netflix.

I did some research on the Netflix Techblog and this is what I found out:

Play events include what title you have watched last, where you did stop watching, where

you used the 30s rewind and others. Impression events are collected as you browse the

Netflix Library like scroll up and down, scroll left or right, click on a movie and so on

Basically, play events log what you do while you are watching. Impression events are

capturing what you do on Netflix, while you are not watching something.

Netflix real-time streaming architecture Netflix uses three internet facing services

to exchange data with the client’s browser or mobile app. These services are simple

Apache Tomcat based web services.

The service for receiving play events is called “Viewing History”. Impression events are

collected with the “Beacon” service.

The “Recommender Service” makes recommendations based on trend data available for

clients.

Messages from the Beacon and Viewing History services are put into Apache Kafka. It

acts as a buffer between the data services and the analytics.

Beacon and Viewing History publish messages to Kafka topics. The analytics subscribes

to the topics and gets the messages automatically delivered in a first in first out fashion.

After the analytics the workflow is straight forward. The trending data is stored in a

Cassandra Key-Value store. The recommender service has access to Cassandra and is

making the data available to the Netflix client.

The algorithms how the analytics system is processing all this data is not known to the

public. It is a trade secret of Netflix.

What is known, is the analytics tool they use. Back in Feb. 2015 they wrote in the tech

blog that they use a custom made tool.

They also stated, that Netflix is going to replace the custom made analytics tool with

85

Figure 28.3: Netflix Streaming Pipeline

Apache Spark streaming in the future. My guess is, that they did the switch to Spark

some time ago, because their post is more than a year old.

28.20 Data Sciecne @OTTO

https://www.slideshare.net/SparkSummit/spark-summit-eu-talk-by-sebastian-schroeder-and-ralf-sigmund

28.21 Data Sciecne @Paypal

https://www.paypal-engineering.com/tag/data/

28.22 Data Sciecne @Pinterest

https://www.slideshare.net/ConfluentInc/pinterests-story-of-streaming-hundreds-of-terabytes-of-pins-from-mysql-to-s3hadoop-continuously?

ref=https://www.confluent.io/kafka-summit-sf18/pinterests-story-of-streaming-hundreds-of-terabytes

https://www.slideshare.net/ConfluentInc/building-pinterest-realtime-ads-platform-using-kafka-streams?

ref=https://www.confluent.io/kafka-summit-sf18/building-pinterest-real-time-ads-platform-using-kafka-streams

https://medium.com/@Pinterest_Engineering/building-a-real-time-user-action-counting-system-for-ads-88a60d9c9a

https://medium.com/pinterest-engineering/goku-building-a-scalable-and-high-performant-time-series-database-system-a8ff5758a181

https://medium.com/pinterest-engineering/building-a-dynamic-and-responsive-pinterest-7d410e99f0a9

86

https://www.slideshare.net/SparkSummit/spark-summit-eu-talk-by-sebastian-schroeder-and-ralf-sigmund
https://www.paypal-engineering.com/tag/data/
https://www.slideshare.net/ConfluentInc/pinterests-story-of-streaming-hundreds-of-terabytes-of-pins-from-mysql-to-s3hadoop-continuously?ref=https://www.confluent.io/kafka-summit-sf18/pinterests-story-of-streaming-hundreds-of-terabytes
https://www.slideshare.net/ConfluentInc/pinterests-story-of-streaming-hundreds-of-terabytes-of-pins-from-mysql-to-s3hadoop-continuously?ref=https://www.confluent.io/kafka-summit-sf18/pinterests-story-of-streaming-hundreds-of-terabytes
https://www.slideshare.net/ConfluentInc/building-pinterest-realtime-ads-platform-using-kafka-streams?ref=https://www.confluent.io/kafka-summit-sf18/building-pinterest-real-time-ads-platform-using-kafka-streams
https://www.slideshare.net/ConfluentInc/building-pinterest-realtime-ads-platform-using-kafka-streams?ref=https://www.confluent.io/kafka-summit-sf18/building-pinterest-real-time-ads-platform-using-kafka-streams
https://medium.com/@Pinterest_Engineering/building-a-real-time-user-action-counting-system-for-ads-88a60d9c9a
https://medium.com/pinterest-engineering/goku-building-a-scalable-and-high-performant-time-series-database-system-a8ff5758a181
https://medium.com/pinterest-engineering/building-a-dynamic-and-responsive-pinterest-7d410e99f0a9

https://medium.com/@Pinterest_Engineering/building-pin-stats-25ec8460e924

https://medium.com/@Pinterest_Engineering/improving-hbase-backup-efficiency-at-pinterest-86159da4b954

https://medium.com/@Pinterest_Engineering/pinterest-joins-the-cloud-native-computing-foundation-e3b3e66cb4f

https://medium.com/@Pinterest_Engineering/using-kafka-streams-api-for-predictive-budgeting-9f58d206c996

https://medium.com/@Pinterest_Engineering/auto-scaling-pinterest-df1d2beb4d64

28.23 Data Sciecne @Salesforce

https://engineering.salesforce.com/building-a-scalable-event-pipeline-with-heroku-and-salesforce-2549cb20ce06

28.24 Data Sciecne @Slack

https://speakerdeck.com/vananth22/streaming-data-pipelines-at-slack

28.25 Data Sciecne @Spotify

https://labs.spotify.com/2016/02/25/spotifys-event-delivery-the-road-to-the-cloud-part-i/

https://www.slideshare.net/InfoQ/scaling-the-data-infrastructure-spotify

28.26 Data Sciecne @Symantec

https://www.slideshare.net/planetcassandra/symantec-cassandra-data-modelling-techniques-in-action

28.27 Data Science @Tinder

https://www.slideshare.net/databricks/scalable-monitoring-using-apache-spark-and-friends-with-utkarsh-bhatnagar

87

https://medium.com/@Pinterest_Engineering/building-pin-stats-25ec8460e924
https://medium.com/@Pinterest_Engineering/improving-hbase-backup-efficiency-at-pinterest-86159da4b954
https://medium.com/@Pinterest_Engineering/pinterest-joins-the-cloud-native-computing-foundation-e3b3e66cb4f
https://medium.com/@Pinterest_Engineering/using-kafka-streams-api-for-predictive-budgeting-9f58d206c996
https://medium.com/@Pinterest_Engineering/auto-scaling-pinterest-df1d2beb4d64
https://engineering.salesforce.com/building-a-scalable-event-pipeline-with-heroku-and-salesforce-2549cb20ce06
https://speakerdeck.com/vananth22/streaming-data-pipelines-at-slack
https://labs.spotify.com/2016/02/25/spotifys-event-delivery-the-road-to-the-cloud-part-i/
https://www.slideshare.net/InfoQ/scaling-the-data-infrastructure-spotify
https://www.slideshare.net/planetcassandra/symantec-cassandra-data-modelling-techniques-in-action
https://www.slideshare.net/databricks/scalable-monitoring-using-apache-spark-and-friends-with-utkarsh-bhatnagar

28.28 Data Science @Twitter

https://www.slideshare.net/sawjd/real-time-processing-using-twitter-heron-by-karthik-ramasamy

https://www.slideshare.net/sawjd/big-data-day-la-2016-big-data-track-twitter-heron-scale-karthik-ramasamy-engineering-manager-twitter

28.29 Data Science @Uber

https://eng.uber.com/uber-big-data-platform/

https://eng.uber.com/aresdb/

28.30 Data Science @Upwork

https://www.slideshare.net/databricks/how-to-rebuild-an-endtoend-ml-pipeline-with-databricks-and-upwork-with-thanh-tran

28.31 Data Sciecne @Woot

https://aws.amazon.com/de/blogs/big-data/our-data-lake-story-how-woot-com-built-a-serverless-data-lake-on-aws/

28.32 Data Sciecne @Zalando

https://jobs.zalando.com/tech/blog/what-is-hardcore-data-science--in-practice/

?gh_src=4n3gxh1

https://jobs.zalando.com/tech/blog/complex-event-generation-for-business-process-monitoring-using-apache-flink/

88

https://www.slideshare.net/sawjd/real-time-processing-using-twitter-heron-by-karthik-ramasamy
https://www.slideshare.net/sawjd/big-data-day-la-2016-big-data-track-twitter-heron-scale-karthik-ramasamy-engineering-manager-twitter
https://eng.uber.com/uber-big-data-platform/
https://eng.uber.com/aresdb/
https://www.slideshare.net/databricks/how-to-rebuild-an-endtoend-ml-pipeline-with-databricks-and-upwork-with-thanh-tran
https://aws.amazon.com/de/blogs/big-data/our-data-lake-story-how-woot-com-built-a-serverless-data-lake-on-aws/
https://jobs.zalando.com/tech/blog/what-is-hardcore-data-science--in-practice/?gh_src=4n3gxh1
https://jobs.zalando.com/tech/blog/what-is-hardcore-data-science--in-practice/?gh_src=4n3gxh1
https://jobs.zalando.com/tech/blog/complex-event-generation-for-business-process-monitoring-using-apache-flink/

Bibliography

[1] J. Ely and I. Stavrov, Analyzing chalk dust and writing speeds: computational and

geometric approaches, BoDine Journal of Mathematics 3 (2001), 14-159.

89

List of Figures

2.1 The Machine Learning Pipeline . 12

13.1 Common SQL Platform Architecture . 31

13.2 Scaling up a SQL Database . 32

13.3 Scaling out a SQL Database . 33

15.1 Hadoop Ecosystem Components . 37

15.2 Connections between tools . 38

15.3 Flume Integration . 39

19.1 HDFS Master and Data Nodes . 47

19.2 Distribution of Blocks for a 512MB File 48

20.1 Mapping of input files and reducing of mapped records 50

20.2 MapReduce Example of Time Series Data 52

20.3 The Map Reduce Process . 53

20.4 Hadoop vs Spark capabilities . 54

20.5 Spark Using Hadoop Data Locality . 57

20.6 Spark Resource Management With YARN 59

24.1 Platfrom Blueprint . 69

25.1 Batch Processing Pipeline . 73

25.2 Stream Processing Pipeline . 74

28.1 Old Netflix Batch Processing Pipeline . 83

28.2 Netflix Trending Now Feature . 85

28.3 Netflix Streaming Pipeline . 86

90

List of Tables

91

	Introduction
	How To Use This Cookbook
	Data Engineer vs Data Scientists
	Data Scientist
	Data Engineer
	Who Companies Need

	Basic Data Engineering Skills
	Learn To Code
	Get Familiar With Github
	Agile Development – available
	Why is agile so important?
	Agile rules I learned over the years – available
	Is the method making a difference?
	The problem with outsourcing
	Knowledge is king: A lesson from Elon Musk
	How you really can be agile

	Agile Techniques
	Scrum
	OKR

	Learn how a Computer Works
	CPU,RAM,GPU,HDD
	Differences between PCs and Servers

	Computer Networking - Data Transmission
	ISO/OSI Model
	IP Subnetting
	Switch, Level 3 Switch
	Router
	Firewalls

	Security and Privacy
	SSL Public & Private Key Certificates
	What is a certificate authority
	JAva Web Tokens
	GDPR regulations
	Privacy by design

	Linux
	OS Basics
	Shell scripting
	Cron jobs
	Packet management

	The Cloud
	AWS,Azure, IBM, Google Cloud basics
	cloud vs on premise
	up & downsides
	Security

	Security Zone Design
	How to secure a multi layered application
	Cluster security with Kerberos
	Kerberos Tickets

	Stream Processing
	Three methods of streaming | available
	At Least Once
	At Most Once
	Exactly Once
	Check The Tools!

	Big Data
	What is big data and where is the difference to data science and data analytics?
	The 4Vs of Big Data | available
	Why Big Data? | available
	Planning is Everything
	The Problem With ETL
	Scaling Up
	Scaling Out
	Please Don’t go Big Data

	Data Warehouse vs Data Lake
	Hadoop Platforms | available
	What is Hadoop
	What makes Hadoop so popular? | available
	Hadoop Ecosystem Components
	Hadoop Is Everywhere?
	SHOULD YOU LEARN HADOOP?
	How does a Hadoop System architecture look like
	What tools are usually in a with Hadoop Cluster

	How to select Hadoop Cluster Hardware

	Is ETL still relevant for Analytics?
	Docker
	What is docker and what do you use it for | available
	Don’t Mess Up Your System
	Preconfigured Images
	Take It With You

	Kubernetes Container Deployment
	How to create, start,stop a Container
	Docker micro services?
	Kubernetes
	Why and how to do Docker container orchestration

	REST APIs
	HTTP Post/Get
	API Design
	Implementation
	OAuth security

	Databases
	SQL Databases
	Database Design
	SQL Queries
	Stored Procedures
	ODBC/JDBC Server Connections

	NoSQL Stores
	KeyValue Stores (HBase)
	Document Store HDFS | available
	Document Store MongoDB
	Hive Warehouse
	Impala
	Kudu
	Time Series Databases
	MPP Databases (Greenplum)

	Data Processing / Analytics - Frameworks
	MapReduce
	How does MapReduce work – available
	Example
	What is the limitation of MapReduce? – available

	Apache Spark
	What is the difference to MapReduce? – available
	How does Spark fit to Hadoop? – available
	Where's the difference?
	Spark and Hadoop is a perfect fit
	Spark on YARN:
	My simple rule of thumb:
	Available Languages – available
	How to do stream processing
	How to do batch processing
	How does Spark use data from Hadoop – available

	What is a RDD and what is a DataFrame?
	Spark coding with Scala
	Spark coding with Python
	How and why to use SparkSQL?
	Machine Learning on Spark? (Tensor Flow)
	MLlib:
	Spark Setup – available
	Spark Resource Management – available

	Apache Kafka
	Why a message queue tool?
	Kakfa architecture
	What are topics
	What does Zookeeper have to do with Kafka
	How to produce and consume messages

	Machine Learning
	Training and Applying models
	What is deep learning
	How to do Machine Learning in production | available
	Why machine learning in production is harder then you think – available
	Models Do Not Work Forever
	Where The Platforms That Support This?
	Training Parameter Management
	What’s Your Solution?
	How to convince people machine learning works | available
	No Rules, No Physical Models
	You Have The Data. USE IT!
	Data is Stronger Than Opinions

	Data Visualization
	Android & IOS
	How to design APIs for mobile apps
	How to use Webservers to display content
	Tomcat
	Jetty
	NodeRED
	React

	Business Intelligence Tools
	Tableau
	PowerBI
	Quliksense

	Identity & Device Management
	What is a digital twin?
	Active Directory

	Building A Data Platform Example
	My Big Data Platform Blueprint
	Ingest
	Analyse / Process
	Store
	Display

	Lambda Architecture
	Batch Processing
	Stream Processing
	Should you do stream or batch processing?
	Lambda Architecture Alternative
	Kappa Architecture
	Kappa Architecture with Kudu

	Thoughts On Choosing The Target Environment
	Cloud vs On-Premise
	Cloud Native or Independent Vendors

	Thoughts On Choosing A Development Environment
	Cloud As Dev Environment
	Local Dev Environment
	Data Architecture
	Source Data
	Analytics Requirements For Streaming
	Analytics Requirements For Batch Processing
	Data Visualization

	Milestone 1 | Tool Decisions

	Case Studies
	How I do Case Studies
	Data Science @Airbnb
	Data Sciecne @Baidu
	Data Sciecne @Blackrock
	Data Sciecne @BMW
	Data Sciecne @Booking.com
	Data Sciecne @CERN
	Data Sciecne @Disney
	Data Sciecne @Drivetribe
	Data Sciecne @Dropbox
	Data Sciecne @Ebay
	Data Sciecne @Expedia
	Data Sciecne @Facebook
	Data Sciecne @@Grammarly
	Data Sciecne @ING Fraud
	Data Sciecne @Instagram
	Data Sciecne @LinkedIn
	Data Sciecne @Lyft
	Data Sciecne @NASA
	Data Science @Netflix – available
	Data Sciecne @OTTO
	Data Sciecne @Paypal
	Data Sciecne @Pinterest
	Data Sciecne @Salesforce
	Data Sciecne @Slack
	Data Sciecne @Spotify
	Data Sciecne @Symantec
	Data Science @Tinder
	Data Science @Twitter
	Data Science @Uber
	Data Science @Upwork
	Data Sciecne @Woot
	Data Sciecne @Zalando

